

Caldo LB Autoinducible con Elementos Traza

Cat. 2114

Para la expresión de cepas bacterianas inducibles por IPTG.

•		. ,	, ,.
nt	\sim r ∞	aalaa	práctica
1110)	A(.I()III	01/01/11/07
		acicii	piactice

Aplicaciones	Categorias
Expresión de proteinas	Escherichia coli

Industria: Medios de cultivo para Biología molecular

Principios y usos

El Caldo LB Autoinducible con Elementos Traza es un medio que soporta una alta densidad celular y, en este caso, está formulado para el crecimiento óptimo de E.coli durante la fase logarítmica por mucho más tiempo. Como resultado, produce un mayor número de proteínas recombinantes y ADN plasmático.

Los medios de autoinducción fueron formulados y desarrollados por primera vez por W. studier para cultivar cepas de expresión inducible por IPTG. El principio de los medios de autoinducción se basa en las fuentes de carbono que en el medio se metabolizan de manera diferente para promover el crecimiento celular de alta densidad e inducir automáticamente la expresión de proteínas de los promotores lac. Los medios de autoinducción contienen glucosa y lactosa como fuente de carbono. Una concentración limitada de glucosa se metaboliza preferentemente durante el crecimiento, lo que evita la utilización de lactosa hasta que la glucosa se agote, generalmente en la fase logarítmica media o tardía. A medida que se agota la glucosa, la enzima \(\mathcal{G}\)-galactosidasa puede absorber la lactosa y convertirla en un inductor alolactosa. La alolactosa provoca la liberación del represor lac desde sus sitios de unión específicos en el ADN y, por lo tanto, induce la expresión de la ARN polimerasa T7 del promotor lacUV5 y desbloquea los promotores T7lac, permitiendo la expresión de proteínas diana por la ARN polimerasa T7. Con los medios de inducción automática, un crecimiento celular de alta densidad es seguido por una inducción espontánea de la expresión de proteínas. No hay necesidad de monitorear la densidad celular y no hay inducción convencional con IPTG..

El crecimiento en paralelo de muchos cultivos no inducidos o autoinducidos es factible porque los cultivos simplemente se inoculan y se cultivan hasta la saturación. Esta es una gran conveniencia y simplifica la inducción y el análisis manual o automatizado de múltiples clones en comparación con la inducción de IPTG convencional, que requiere monitorear el crecimiento de cada cultivo y agregar el inductor en la etapa adecuada de crecimiento.

La triptona proporciona nitrógeno, vitaminas, minerales y aminoácidos esenciales para el crecimiento. El extracto de levadura es fuente de vitaminas, particularmente del grupo B. Los fosfatos de potasio actúan como un sistema tampón para prevenir la muerte celular. Su formulación se caracteriza por la presencia de oligoelementos que satisfacen todos los requisitos específicos para las bacterias.

Fórmula en g/L

Glucosa	0,5	Sulfato amónico	3,3
Fosfato disódico	7,1	Sulfato magnésico	0,15
Fosfato monopotásico	6,8	Triptona	10
Extracto de levadura	5	Elementos traza	0,015
Alfa lactosa	2		

Preparación

Suspender 34,9 gramos de medio en un litro de agua destilada. Mezclar bien y disolver por calentamiento agitando con frecuencia. Hervir durante un minuto hasta su completa disolución. Esterilizar en autoclave a 121 °C durante 15 minutos. Mezclar bien y dispensar como se desee.

Instrucciones de uso

- Llevar a cabo el procedimiento experimental de acuerdo con el uso o propósito apropiado.
- Inocular e incubar a una temperatura de 35±2 °C durante 18-48 horas.

Control de calidad

Solubilidad	Apariencia	Color del medio deshidratado	Color del medio preparado	Final pH (25°C)
Sin restos	Polvo fino	Beige	Ámbar	7,0±0,2

Test microbiológico

Condiciones de incubación: (35±2 °C / 18-48 h).

Microrganismos	Especificación	
Escherichia coli ATCC 23724	Buen crecimiento	
Escherichia coli ATCC 33694	Buen crecimiento	
Escherichia coli ATCC 33849	Buen crecimiento	
Escherichia coli ATCC 39403	Buen crecimiento	
Escherichia coli ATCC 47014	Buen crecimiento	

Almacenamiento

Temp. Min.:2 °C Temp. Max.:25 °C

Bibliografía

Studier, F. W. 2005. Protein production by auto-induction in high-density shaking cultures. Protein expression and purification 41: 207-234